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AN INVERSE ELASTOPLASTIC PROBLEM FOR PLATES

I. Yu. Tsvelodub UDC 539.37

We study an inverse elastoplastic problem of determining the residual stresses, the plasticity
zone, and the external loads for a plate for known residual deflections which occur after removal
of these loads and elastic unloading. Assuming that the deformation theory of plasticity is valid
at the active stage of deformation, we prove the theorem of unique solution. An iterative method
of solution is proposed and a variational formulation of the problem is given. Some simple
ezamples are considered.

In contrast to similar problems for viscoelastoplastic plates [1-3], the inelastic strains in the elastoplastic
problem are instantaneously plastic (there are no viscous components which change with time), and the zone
of inelastic deformation (the plasticity zone) does not coincide, in general, with the region occupied by the
plate.

1. Formulation of the Problem. We assume that after application and removal of unknown external
loads, a sufficiently thick, initially undeformed plate has residual deflections @ = @(z1,z3) which are small
compared to its thickness A = h(z1,z2). The middle plane of the plate Oz;z3 occupies a region S bounded
by a contour v, the z axis being perpendicular to this plane. Inasmuch as || < h, the residual strains &
have the form [1-3]

€ =—z0n, |z|<A/2 (1.1)
Moreover, for pgipgr # 0, we have [1-3]
Ekl = GklmnPmn + €L, CkimnPklPmn > 0, (1.2)

where agimn, pri, and e}, are the components of the elastic-compliance, residual-stress, and plastic-strain
tensors, respectively, and summation from 1 to 2 is performed over repeated indices. Here and henceforth,
kil=1,2.

We represent the stresses o; before unloading in the form [1-3]

Okl =0k + Prts, Okl = —2bkimnWonn, (1.3)

where of; and w® are the elastic stresses and the deflection which are the solution of the pure elastic problem
with the same external loads ¢ = ¢(z1,z2) (before removal of the loads) and the corresponding boundary
conditions, and by, are the components of the tensor inverse to apjmy,. The deflection w and the strain eg;
before unloading can be written in the form

w = w® + 0, €kl = —ZW kI = GklmnOmn + €4y, (1.4)

and the equations of equilibrium take the form

h/2 h/2
Qr = My, Qrk = —q, Qr = / o3 dz, My = / opzdz. (1.5)
—h/2 —h/2
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For any fields £z; and w related by equalities (1.1) and oy; from (1.5), the equation of virtual works

T foussicn [ [0+ 2o o] y
~h/2 S 5 Y

(Q = Qiny, H = Myn;ty, G = Myngny)

holds [1-3]. Here ny and t; are the components of the unit normal and tangent vectors to the contour v and
s is the length of its arc.

We assume that during active deformation, the deflection increases monotonically from zero to the
desired value of w = w(z;,z2). According to the deformation theory of plasticity, we have

0, Y <or
?r _ ’
€n = { A0E/dow, T3 or, (L7

where ¥ = Z(0y;) is a homogeneous convex function of the first degree (for example, the stress intensity o;),
or is the yield point, A = A(X) > 0 is a specified function [for a hardening material, )'(X) > 0], and A > 0
is the indeterminate factor for an ideally plastic material [in the latter case, one should write the equality
¥ = or instead of the second inequality in (1.7)].

For a convex function [1], where Aoy = 0',(;,) -~ a,(c,) and AL =3 — X9 = (o-,(:,)) (Ul(:l)) expression
(1.7) and the inequality

ox
AY 2 — A 1.
80‘“ akl=a'l(3) Tkl ( 8)

imply the stability condition for plastic strains
Aqboy >0 (Acf =" - i), (19)

which holds for any two stress states in the plastic and elastic regions. In addition, for an ideally plastic
medium, the conditions

EWaoy >0,  £PAcy <o, (1.10)

which are stronger than (1.9), hold.

We note that the equality in (1.9) and (1.10) holds for ep(l) # 0 and (-:p( ) # 0 only if Aogy = 0 or
for 6251) = 8252) =0if ¥; < or (2 = 1, 2) Indeed, for an ideally plastic material, this follows from relations
(1.7) and the convexity of the surface ¥ = aT For a hardening material, it follows from (1.7) and (1.8) that
0= Al Ao = ANAT = XN (Zg)(AE)? > 0 (Lo lies between Ty and ¥3), which is possible only for AT = 0
and A(0X/00r)Aoy; = 0. Hence, we have Aoy = 0 by virtue of the convexity of the surface ¥ = const and

the orthogonality of the vector X /doy; to this surface {1].
It is worth noting that the case where ezgl) # 0 and ep(2) =0 (i.e., ¥y 2 or > X3) and sk( )Aakl =0
cannot occur, since it follows from (1.8) that 0 = 3)3/50“' (1)A0'k1 Y1 -2 (ie, X2 2 Xp).

As in [1-3], we assume that during unloading one of the condltlons

e Ow®
wt = S =0, (1.11a)
w =G =0, (1.11b)
~ ~ OH
G=Q+ 5~ =0, (1.11c)
dwt ~ OH
5 =@+ 5, =0 (1.11d)
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is satisfied on the contour v, where the tilde sign refers to the quantities that characterize the forces occurring
after unloading. Conditions (1.11a)-(1.11c) mean that during unloading the contour ~ is clamped, simply
supported, and free of forces, respectively.

Thus, the inverse elastoplastic problem reduces to the determination of the deflection w = w(z1,3)
[or w® = w®(z1,z2)] and comprises system (1.1)~(1.5), (1.7), in which @ = w(z;,z2) is a specified function,
and one of the boundary conditions (1.11).

2. Uniqueness Theorem. In the problem in question, the plasticity zone, the stresses oy, and the
residual stresses py; in the plate are uniquely determined under the adopted assumptions, and the solution
for the deflection w is unique under certain additional conditions. Let us show this.

We denote the cylindrical space region occupied by the plate by V, ie., V = {z|lz = (z1,22,2) €
R3, (z1,z2) € S, |z} € h/2}. We assume that there exist two solutions of the problem. The differences
between the corresponding quantities are denoted by the symbol A (see Sec. 1). Inasmuch as A&y = 0, we
have

/ AZyAoy dV =0,
14

Hence, bearing in mind (1.2), (1.3), and the equality [1-3]

/ @kmn AT AP AV = 0, (2.1)
\4
which follows from (1.6) and (1.11), we obtain
I= /(aklmnAPklApmn + AeZIAO‘k[) dv =0. (2.2)
v

We assume that two plasticity zones which correspond to the solutions of the problem exist in V:

V1 U V12 and V, U V)g, the intersection of which is the region Vo, i.e., e’,:gl) = 0in Vs, 5%2) = 0in W, and

ezgl) # 0 and 6252) # 0 in Vip. Equality (2.2) then takes the form

/ kimn ApriDpmn dV + / D Agy dV — / XD Agy dv + / Al Aoy dV =0,

v i V2 Viz
which, in view of inequalities (1.2) and (1.9) {or (1.10)] and the remark on the equality sign in (1.9) [or
(1.10)}, is possible only if each of the four integrals vanishes. Hence, Apy; = 0in V, 61,:5') =0inV;,ie.,V,=0
(t=1, 2), and Aoy = 0 in V2. Thus, the residual stresses py; everywhere in V, the plasticity zone V, = Vja,
and the stresses o (and, consequently, of;) in V, are uniquely determined.

For the region V,, we have V, = {z|z = (z1,%2,2) € R®, (z1,22) € Sp, £h/2 < |2| < R/2}. Here
£ = £(z1,z2) (0 < € € 1) is the dimensionless distance between the middle plane and the plasticity zone
normalized to 2/2 and S, C S. It follows from (1.3) that, for (z1,z2) € Sp, the deflection w® is determined
with an accuracy to a linear function of x; and z3. If the region S, adjoins the nonrectilinear part of the
contour v, on which the boundary conditions (1.11a) or (1.11b) are specified, the deflection w® is uniquely
determined. Thus, if S, = S, the deflection w® (and, consequently, w) is determined (in the above-mentioned
meaning) at every point of the plate; otherwise, it is determined only in the region S, C S. However, if
w® = w®(z1, Z2) is an analytic function in Sy, then w® can be continued into the whole region S. This implies
that at least in the two above-mentioned cases (for S, C S in the class of analytic functions and for S, = 5),
the solution for w® is unique in S [for conditions (1.11a) or (1.11b)] or it is determined up to a linear function
of z; and z3, which corresponds to a rigid displacement, {for (1.11c)] or up to an arbitrary constant [for
(1.11d)]. The theorem is proved.

3. Examples. We consider a plate of constant thickness h from isotropic material for which the
function ¥ from (1.7) coincides with the stress intensity o;. The Poisson ratio in the Hooke’s law is taken to
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be 0.5. Then, according to (1.4) and (1.7), the stress-strain relations can be written in the form

=3 E‘_’(c‘:kl + Ennbrt) = —gzj(w,kl + W,nnbir),
3 1 1/2 2 2 2 \1/2
g = (501;10“ - §0kk0u) = (of; — 011022 + 033 + 3073) "/, (3.1)

2 /2 2
€i = [§(€k1€k1 + 5kk511)] = %lzl(w?u + why + wiwae + why) Y2,

where ¢; is the strain intensity and &y are the components of the identity (plane) tensor. The relation between
o; and ¢; coincides with that between the stress and the axial strain in the uniaxial tension, i.e.,
Eei, ei<er,
o; = .

' { fei), ei>er, (3.2)
where E is the Young’s modulus, e7 = o7/ E, f(e;) is a function inverse to &; = o;/E + A(o;) for a hardening
material [(f = f(&i) exists and it is unique, since ¢ = 1/E + X'(o;) > 0, which implies that 0 < f'(e;) < E)],
and f = o7 for an ideally plastic material.

For a linearly hardening medium, the function f has the form

f(ei) = pei +(E —p)er, wp=(op—or)/(ep—eT) < E, (33)

where op is the ultimate strength, and ep is the strain that corresponds to op at the moment of failure (on
the uniaxial diagram o-¢).

Let £ be the dimensionless distance from the middle plane to the plasticity zone (see Sec. 2). From
(3.1) and (3.2), similarly to [4], we obtain the following expressions for the moments:

§h/2 R/2
My = 2< / opzdz + / okl2 dz) = —D§3(w’kl + w,nn5k1)/2 + M,z:l’
0 €h/2 (3.4)
h/2
4 i 3
M = ——(wi+ wanbp), L= f—(ilz2 dz, D= ER
’ ehrz o

The parameter £ can be expressed via a combination of the second derivatives of w using the condition
ei = et for |z| = €Rh/2; according to (3.1), we obtain

5 = \/gsTh—.l(w,zll + w,222 + w,uw,zz + w,212)—1/2. (35)
The moments Mf,; corresponding to the elastic “unbending” w*® are of the form
Mlgl = _D(w,ekl + wfnn6kl)/2' (36)

We note that Mf ;) = —DAAw®, where AA is the biharmonic operator. Hence, taking into account the
equality Mki ki = Mg, 1, which follows from (1.5), we obtain a fourth-order nonlinear equation for the desired
deflection w®:

DAAW® = —Myy i1, (3.7)

where My, are determined from formulas (3.4) and (3.5), in which, according to (1.4), w should be replaced
by w® + . Equation (3.7) is to be supplemented by one of the boundary conditions (1.11).

We now consider a simple example where the residual deflection is a quadratic function of the
coordinates z1 and z2,i.e., W = —aycrr;/2 (ap = const) and the contour 7 is free after unloading [conditions
(1.11c) hold].

It follows from (1.1) that & = zayy, i.e., the residual strains are independent of z; and z2. We search
for a solution in the form w = ~fzrz;/2 (Br1 = const), i.e., according to (1.4), exy = 28. It is clear from
(3.4)~(3.6) that the moments My; and Mg, are constant over the region S occupied by the plate and Eq. (3.7)
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is identically satisfied. To satisfy the boundary conditions (1.11c), it suffices to set My = M§;. It follows from

(3.4)-(3.6) that Br; = Oay (i.e., w = O, where © = const). Moreover, we have

1—g8 = 8L _ o= (o) + o + anany + ofy)V/2¢
3D \/§€T )

Let the function f(e;) have the form (3.3). According to (3.1) and (3.8), &; = 2e7z/(h€) for 0 < z < h/2.
We then have the following equality for the integral J1 in (3.4) and (3.8):

n= (5 [Ea-ey+ Eten - e,

which is substituted into (3.3) to give the equation for ¢

(3.8)

_ h(a%l + a%z + 11092 + a%z)l/z
V3er(1 - p/E)

One can see that, for any y > 0, Eq. (3.9) has a single root ¢ in the interval (0, 1) and (y +3/2)~! <
£ < (y +1)7L. For known £, one finds the quantity © from (3.8) and, consequently, the deflection w = Ow.

One should note that, for g = 0, the function (3.8) and the solution correspond to the plate from an
ideal elastoplastic material.

If the section of the elastoplastic diagram between the points (er,or) and (ep,0B) is approximated
by a power function, for f(e;) from (3.2), we have f(e;) = or(eifeT)™ = or[2z/(h€)]™, where m =
In{(op/or)/In(ep/eT) < 1. Substituting this function into (3.8), we obtain

P(6) = (1=m)e* — (m+2yié =3¢+ (m+2) =0, (3.10)
where y; = (1 — p/E)y and the constant y is determined in (3.9). Since 0 < m < 1 and ¢'(£) = 3(1 — m)(£% —
™)~ (m+2)y1 <0for 0 <€ <1, 9(0) >0, and ¢(1) < 0, the single root ¢ of Eq. (3.10) exists in the
above-mentioned interval for any y; > 0. In view of the fact that 3 < £ < €™ <m+4(1-m)ffor 0 < €< 1
and 0 < m < 1 [5], with allowance for (3.10), one can revise the root bounds:

2(1 —m) 1
<E{< .
—m)+ (mtom - Tt
4. Iterative Method of Solution. Similarly to {2, 3], one can reduce the problem in question to the
determination of the deflection w from the functional equation

w = F(w), F(w) = w*(w) + w. (4.1)

& -2y+3)¢+2=0,

(3.9)

To solve (4.1), we use an iterative method in which
vt = F(w™) = v + o (4.2)

where w®® = w®(w") (n =0, 1, 2,...), and we set, for example, w® = @ as a zeroth approximation.

Thus, in each iteration, we have a direct problem of determining the elastic “unbending” w® =
w®(z1,z2) for a known function w = w(z1,z2) and one of the boundary conditions (1.11). The solution
of this problem is unique (in the meaning mentioned in Sec. 2), since, for the difference between the two
possible solutions, with allowance for (1.3), (1.4), and (2.1), we obtain

0= / AepAoy dV = / (h3/12)bptmn AwS Aw dS + 1
v S

[the quantity I is determined in (2.2)], which is valid only for Aw®,; = 0. For example, for an isotropic plate
of constant thickness, the problem of determining w® reduces to the biharmonic equation (3.7) with known
right-hand side and one of conditions (1.11).

Statement. The sequence (4.2) converges to the desired deflection w.

723



We introduce a semi-norm
(w1,w2) = [ (B /20)bumuuli] w3, dS
S

generated by the scalar product ||w|| = (w,w)/2. If w = 0 at three points of the plate which do not lie on
the same straight line, ||wl} is a norm equivalent to [lw| 2(g) (2, 3]

We denote the difference between the exact and approximate values (i.e., the values obtained in the
nth iteration) of the corresponding function u by Au™ = u™ — u. Then, from (4.1) and (4.2) we find

Aw™ = Aw 1), (4.3)
We show the validity of the inequality
lAw*™ | < law™|. (4.4)
Indeed, from (1.3), (1.4), and (2.1) we obtain
Jh = / A AT AV = 2| Aw™|? + I* > 2| Awt™|]?,
|4

(4.5)
"= / (ki APLARE + Al AcTy) dV.
v
At the same time, we have
Jt = /Asﬁ,Aaﬁ‘ dV = 2(Aw™, Aw™) < 2] Aw™|| [|Aw®™|], (4.6)
v

since, in view of (4.3) and (2.1), we have

/ AelApydV = / AP DApdv =0,
|4 14

where Aezgn_l) = —-zAw,ek(ln_l) = akl,-jAaf}"_l).

The inequality (4.4) follows from (4.5) and (4.6); we note that the equality in (4.4) can occur only
simultaneously with the equality in (4.5) and (4.6), i.e., for I" = 0 and (Aw®, Aw®?) = [|Aw"||||Aw®"||. The
latter equality is valid in the case where the functions Aw’, and Aw¢] differ only by the positive constant
factor in the region S (see [5]), which is equal to unity according to (4.4), i.e., Aw’; = AwS.

It follows from (4.3) and (4.4) that ||Aw®™|| < ||Aw®™=D|; therefore, the limit Jim |Awe™)| =
Jim |Aw™|| exists and, consequently, I" — 0 and Aw?; — Aw%). Following the reasoning in Sec. 2 and
eliminating the rigid displacements, we have Apf; — 0in V, V' — V, and Aoy — 0in Vj, and Aw”™ — Aw®”
in S. Taking into account that w" = w®®+w", from (4.1) we find that A®w” = Aw™—~Aw®® — 0in S. Thus, the
sequence (4.2} converges to the deflection w which provides the specified residual deflection @, and the residual
stresses pg), the plasticity zone V3!, and the stresses o}, therein converge to the corresponding functions which
satisfy the solution of the inverse elastoplastic problem. The statement is proved.

5. Variational Formulation of the Problem. The iterative process (4.2) can be used to determine
approximate solutions of the inverse elastoplastic problem. To this end, we formulate the variational principle.
We calculate the work of the residual stresses pg; which is done in the strain variations écg; in the plate:

-6 = /Pkl‘sfkl dv = —/Mklawfkl ds.
\ S

[The latter equality follows from the fact that dex = 6ef; = —zéwfkl, since the function @ = w(zy,z2) is
specified and §&x; = 0.] After simple manipulations similar to [1], we obtain
- -~ OH . ¢
—6lp =~ [ My pburds + | [(Q + -—>5w° - G6(aw )}ds. (5.1)
J ' J ds on



It follows from (5.1) that satisfaction of the equality 61 = 0 for an arbitrary function éw?® is equivalent
to satisfaction of the equation of equilibrium Mkl,kl = 0 and the boundary conditions (1.11c) after unloading.
If w® = 0 and/or Ow®/On = 0 on 7, the varied function w® from (5.1) must satisfy these conditions. The
deficit conditions from (1.11) follow from 812 = 0 as well.

One can formulate the variational principle only if the expression —py;de;; is the complete differential
of a certain function ® = ®(ey), i.e.,

__o0%
pr =5 (5.2)

We inquire when the function @ exists. From (1.2) and (1.4), we find

Pt = Okl + bktmn (Emn — Emn)- (5.3)

It follows that (5.2) holds provided the stress potential Uy or the strain potential U, exists (i.e., o = OUy /e
or exy = OUc[/Doy1), since these potentials are related by the equality Us(eg;) + Ue(or1) = oriers and the
existence of one of them ensures the existence of the other. From (5.3), we obtain

For example, (1.4) and (1.7) imply the existence of the function @ for a hardening elastoplastic medium, since
in this case

okl
AklmnOklTmn T+ /621 doy.

0

Ue(on) =

DN | =

We now investigate in greater detail an isotropic plate of constant thickness A characterized by Eqgs.
(3.1) and (3.2), according to which

e
¢ { Ee?/?, € < eT,

U.(e = il &y dﬁi =

From (5.4), we find

I3=/f(6,')d{-:,‘.
T

E(e}-e%)2-F1— L, & >er,
Fy = (2/3)E(ériers + Exien)-

One can easily see that ® = ®(ey;) is a continuously differentiable convex function that satisfies an
inequality of the form (1.8). It follows that the minimum of the functional Ir(w®) = / ®(eyy) dV occurs for

_ . <
D(en) = { F, ST (5.5)

v
the actual deflection w = w® + w, which is the solution of the inverse elastoplastic problem, since for any
different field @ = @® + @ that satisfies the kinematic boundary conditions (1.11) (if they are included in the
formulation of the problem), by virtue of (1.8), we have

oo
Iy(0°) — I(w®) = /[‘I’(Ekz) ~ &(en)|dV > / a(éu —en)dV = /sz(éiz —ep)dV =0
v % v

[the latter equality follows from (1.6) and (1.11)].

Thus, the inverse elastoplastic problem reduces to the determination of the minimum of the functional
I = I;(w®), which enables one to construct approximate solutions. As an example, we consider a linearly
hardening medium for which the function f(e;) is determined in (3.3). From (5.5), we obtain

<I>={ ~Fy, g < EeT,

~F +(E - p)ei— ET)2/2, €i > ET. (5.6)

We search for the first approximation of the deflection w in the form w = @@, where O is a constant.
Denoting the dimensionless distance from the plane z = 0 to the plasticity zone by ¢, from (5.6) and (3.5),
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we find

k)2 h/2
12(9)=/[—2/F1dz+(E—p) /(s,--eT)2dz] ds
5 o £h/2
Eh3 2 3In-1 2
=i (a®® —20)I4 — 32aOI5 — az="07" I + 3=’ al], (5.7)

7 2er . . o
a:l_E-’ &z—-l—l—, I4=S/’y,2d5, I5=S/“/,'d5, Iez_-:s/»-yilds,

5 = [(2/3) (@ w1 + B )2

Here and below, we denote the area of the region S by Si.
Setting the derivative I}(©) to zero, from (5.7), we obtain

3 2 (Is\/* 2 (I\Y3/1  3e I

Since w = Ow, in view of (3.5), we have 7; = &/(£0) and 0 < £ < 1. It follows that I > 20725,
and Is < Oz2"15;, ie,n < 1.

A simple analysis has shown that Eq. (5.8) has a single root in the interval (0, 1) for p > 3, i.e.,
(32/2)[Is/1s — (Is/1s)/*] + 1/a > 0. The deflection corresponding to this solution can be taken as a zeroth
approximation in the iterative process (4.2), i.e., one can set w® = ©w. Apparently, for this choice of w?,
the sequence (4.2) converges to an exact solution of the inverse elastoplastic problem more rapidly than for
wd = 1.

We note that, if 4; = const, we have n = ¢, and Eq. (5.8) coincides with (3.9), i.e., in this case, the
solution is exact and corresponds to that considered in Sec. 3.
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