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AN I N V E R S E  E L A S T O P L A S T I C  P R O B L E M  F O R  P L A T E S  

I. Yu. Tsvelodub UDC 539.37 

We study an inverse elastoplastic problem of determining the residual stresses, the plasticity 
zone, and the ezternal loads for a plate for known residual deflections which occur after removal 
of these loads and elastic unloading. Assuming that the deformation theory of plasticity is valid 
at the active stage of deformation, we prove the theorem of unique solution. An iterative method 
of solution is proposed and a variational formulation of the problem is given. Some simple 
ezamples are considered. 

In contrast to similar problems for viscoelastoplastic plates [1-3], the inelastic strains in the elastoplastic 
problem are instantaneously plastic (there are no viscous components which change with time), and the zone 
of inelastic deformation (the plasticity zone) does not coincide, in general, with the region occupied by the 
plate. 

1. F o r m u l a t i o n  of the  P r o b l e m .  We assume that after application and removal of unknown external 
loads, a sufficiently thick, initially undeformed plate has residual deflections @ = tb(xl, x2) which are small 
compared to its thickness h = h(xl, x2). The middle plane of the plate Oxlx2 occupies a region S bounded 
by a contour 7, the z axis being perpendicular to this plane. Inasmuch as It5] << h, the residual strains gkI 
have the form [1-3] 

gkl = --zCv,kl, [z I ~< h/2. (1.1) 

Moreover, for PktPkl ~ O, we have [1-3] 

gkl = aklmnPmn + r aklmnPklPmn > O, (1.2) 

where aklmn , Pkl, and e~t are the components of the elastic-compliance, residual-stress, and plastic-strain 
tensors, respectively, and summation from 1 to 2 is performed over repeated indices. Here and henceforth, 
k , l =  1, 2. 

We represent the stresses ~rkt before unloading in the form [1-3] 

= + Pkt, = -zbklmr,  m,,, (1.3) 
where a~l and w e are the elastic stresses and the deflection which are the solution of the pure elastic problem 
with the same external loads q = q(xl, x2) (before removal of the loads) and the corresponding boundary 
conditions, and bklmn are  the components of the tensor inverse to aklmn. The deflection w and the strain Ckl 
before unloading can be written in the form 

w m w e + ~ ,  

and the equations of equilibrium take the form 

hi2 

Qk = Mkl,t, Qk,k = -q ,  Ok = j cr3k dz, 
-h/2 

gkl "= --ZW,kl "~" aklmnO'rnn "4- gPkl, (1.4) 

hi2 

/ aktzdz. (1.5) M k t  = 

-h/2 
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For any fields ekt and w related by equalities (1.1) and o-kz from (1.5), the equation of virtual works 

h/2 
w_G~ f fo' ,  'aSaz=/qwdS+f[(o+ 7) onj 

-h/2 S S 7 (1.6) 

(Q = Qknk, H = Mktnktl, G = Mktnknt) 

holds [1-3]. Here nk and tt are the components of the unit normal and tangent vectors to the contour 7 and 
s is the length of its arc. 

We assume that  during active deformation, the deflection increases monotonically from zero to the 
desired value of w = w(x l ,  x2). According to the deformation theory of plasticity, we have 

= { 0, E < o-T, 
(1.7) 

AOEIOo.kt, E >1 o.T, 

where E = E(o-kt) is a homogeneous convex function of the first degree (for example, the stress intensity ai), 
o-T is the yield point, A = A(E) > 0 is a specified function [for a hardening material,  )d(E) > 0], and A > 0 
is the indeterminate factor for an ideally plastic material [in the latter case, one should write the equality 
E = aT instead of the second inequality in (1.7)]. 

For a convex function [1], where Ao.kl = o-i~ ) -  a ~  ) and AE = E,  - E2 = E(o'~l/)) - E(o'~)), expression 
(1.7) and the inequality 

imply the stability condition for plastic strains 

kl ),  

(1.8) 

(1.9) 

which holds for any two stress states in the plastic and elastic regions. In addition, for an ideally plastic 
medium, the conditions 

411)mo-kl >/ 0, 8~12)mO'kl ~< 0, (1.10) 

which are stronger than (1.9), hold. 
We note that  the equality in (1.9) and (1.10) holds for ~p(1) ~12) ~kt # 0 and # 0 only if Aakl = 0 or 

for r = r = 0 if Ei < o-T (i = 1, 2) Indeed, for an ideally plastic material,  this follows from relations ~kl 
(1.7) and the convexity of the surface E = aT. For a hardening material,  it follows from (I.7) and (1.8) that 
0 = AePklAO'kl /> AAAE = At(E0)(AZ) 2 1> 0 (E0 lies between E1 and E2), which is possible only for AE = 0 
and A(OE/Oakl)Ao.ki = 0. Hence, we have Ao-ki = 0 by virtue of the convexity of the surface E = const and 
the orthogonality of the vector OE/Oo.kt to this surface [1]. 

It is worth noting that  the case where ~ 1 )  # 0 and ~ I  2) = 0 (i.e., E1 >/ o.T > E2) and r = 0 

cannot occur, since it follows from (1.8) that 0 = OE/Oakt (1)/~o'kl /> E1 -- E2 (i.e., E2 >/El) .  
lakl=a'kl 

As in [1-3], we assume that during unloading one of the conditions 

aw e 
we = 0 n  = 0, (1.11a) 

w e = 8 = O, (1.11b) 

0_f/ 
O = Q + - - ~ s  = 0 ,  (1.11c) 

o w  o = + 

0n = 0  (1.11d) 
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is satisfied on the contour 7, where the tilde sign refers to the quantities that characterize the forces occurring 
after unloading. Conditions (1.11a)-(1.11c) mean that  during unloading the contour 7 is clamped, simply 
supported, and free of forces, respectively. 

Thus, the inverse elastoplastic problem reduces to the determination of the deflection w = W(Xl, x2) 
[or w e = we(xl,x2)] and comprises system (1.1)-(1.5), (1.7), in which ~ = zS(Xl,X2) is a specified function, 
and one of the boundary conditions (1.11). 

2. U n i q u e n e s s  T h e o r e m .  In the problem in question, the plasticity zone, the stresses akt, and the 
residual stresses Pkl in the plate are uniquely determined under the adopted assumptions, and the solution 
for the deflection w is unique under certain additional conditions. Let us show this. 

We denote the cylindrical space region occupied by the plate by V, i.e., V = {x[x = (x l ,x2 ,z )  E 
R 3, (xl,x2) E S, ]z[ ~< hi2}. We assume that there exist two solutions of the problem. The differences 
between the corresponding quantities are denoted by the symbol A (see Sec. 1). Inasmuch as Agkt = O, we 
have 

f AgklA~rkt dV O. 
V 

Hence, bearing in mind (1.2), (1.3), and the equality [1-3] 

f aklmnAcr~lApmn ---- 0, (2.1) dV 
V 

which follows from (1.6) and (1.11), we obtain 

I - f (akt . , .ApktAp. , , ,  + Ae t X .k ) d V  = O. (2.2) 
V 

We assume that two plasticity zones which correspond to the solutions of the problem exist in V: 
V1 t3 V12 and V2 t.J 1/12, the intersection of which is the region V12, i.e., r = 0 in V2, .p(2) = 0 in V1, and r 

r 1) # 0 and r 2) # 0 in V12. Equality (2.2) then takes the form 

v vl  v2 vx2 

which, in view of inequalities (1.2) and (1.9) [or (1.10)] and the remark on the equality sign in (1.9) [or 

(1.10)] is possible only if each of the four integrals vanishes. Hence, Apk I = 0 in V, .p(i) = 0 in V~, i.e., k~ = 
' ~ k l  

(i = 1, 2), and Ao'kl = 0 in 1/12. Thus, the residual stresses Pkl everywhere in V, the plasticity zone Vp - -  V 1 2 ,  

and the stresses akt (and, consequently, a~:t) in Vp are uniquely determined. 
For the region Vp, we have Vp = {xlx = (x l ,x2 ,  z) E R 3, (Xl,X2) E Sp, ~h12 <~ Izl hi2}, Here 

= ~(Xl, z2) (0 < ~ ~< 1) is the dimensionless distance between the middle plane and the plasticity zone 
normalized to hi2 and Sp C S. It follows from (1.3) that,  for (Xl, z2) E Sp, the deflection w ~ is determined 
with an accuracy to a linear function of Zl and x2. If the region Sp adjoins the nonrectilinear part of the 
contour 7, on which the boundary conditions (1.11a) or (1.11b) are specified, the deflection w r is uniquely 
determined. Thus, if Sp = S, the deflection w ~ (and, consequently, w) is determined (in the above-mentioned 
meaning) at every point of the plate; otherwise, it is determined only in the region Sp C S. However, if 
w ~ = w~(xl, x2) is an analytic function in Sp, then w ~ can be continued into the whole region S. This implies 
that at least in the two above-mentioned cases (for Sp C S in the class of analytic functions and for Sp = S), 
the solution for w ~ is unique in S [for conditions (1.11a) or (1.11b)] or it is determined up to a linear function 
of z~ and z2, which corresponds to a rigid displacement, [for (1.11c)] or up to an arbitrary constant [for 
(1.11d)]. The theorem is proved. 

3. Example s .  We consider a plate of constant thickness h from isotropic material for which the 
function E from (1.7) coincides with the stress intensity cri. The Poisson ratio in the Hooke's law is taken to 
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be 0.5. Then, according to (1.4) and (1.7), the  stress-strain relations can be writ ten in the  form 

2 ~ ,  2 0.i. 
0.k, = 5 ( kt + = + w, . , ,6k , ) ,  

3 1 ,~ a/2 
O'i = "~O'kl0.kl- "~O'kkO'll) = (~ 0"110"22 + 0"22 + 30"22) 1/2, (3.1) 

[2 11/2 
= g(ek ekt + Sk E.)] = Izl(w xx + W2,22 + W,11W,22 + W~12) 1/2, 

where sl is the strain intensity and 6kt are the  components of the ident i ty  (plane) tensor. The  relation between 
0"i and ~i coincides with that  between the stress and the axial strain in the uniaxial tension, i.e., 

{ E~i, ei <~ ~T, 
0.i = ci > (3.2) 

where E is the Young's modulus,  ST = 0 .T /E ,  f (e i )  is a function inverse to ei = 0. i /E  + )t(oi) for a hardening 
' = l i e  + A'(ai) > 0, which implies tha t  0 < f ' (~i)  < E)], material [(f = f ( e i )  exists and it is unique, since ei 

and f _ 0"T for an ideally plastic material.  
For a linearly hardening medium, the  function f has the form 

f ( e i )  = #r + (E  - , ) S T ,  it = (0.B -- a T ) / ( e B  -- eT) < E ,  (3.3) 

where 0"B is the ul t imate  strength, and eB is the strain that  corresponds to 0.B at the m o m e n t  of failure (on 
the uniaxial diagram 0"-~). 

Let ~ be the dimensionless distance from the middle plane to the plasticity zone (see Sec. 2). From 
(3.1) and (3.2), similarly to [4], we obtain the  following expressions for the moments:  

~h/2 h/2 

kl, 
o ~h/2 (3.4) 

h/2 
4 f(r E h  3 

/ dz,  D - M~I = ---~(w,kt + w,n,~6kt)I1, 11 = --  e---'~ 9 
~h/2 

The parameter  ~ can be expressed via a combination of the second derivatives of w using the condition 
r = r for [z] = ~h/2; according to (3.1), we obtain 

2 = V/3STh-I(w,2 1 + w,2 2 + w,11w,22 + w212) -1/2. (3.5) 

The moments  M~t corresponding to the elastic "unbending" w e are of the form 

M~ t = --D(w:kl + w:nn6kt)/2. (3.6) 

We note that  M~t,k I = - D A A w  e, where A A  is the biharmonic operator.  Hence, taking into account the 
equality Mkt,kt = M~t,kt, which follows from (1.5), we obtain a fourth-order nonlinear equat ion for the desired 
deflection we: 

D A A w  e = --Mkl,kt, (3.7) 

where Mkt are determined from formulas (3.4) and (3.5), in which, according to (1.4), w should be replaced 
by w e + tb. Equation (3.7) is to be supplemented by one of the boundary  conditions (1.11). 

We now consider a simple example where the residual deflection is a quadrat ic  function of the 
coordinates 271 and x2, i.e., t~ = --aklXkXl/2 (Otkl = const) and the contour  3' is free after unloading [conditions 
(1.11c) hold]. 

It follows from (1.1) that  gkz = zakt, i.e., the residual strains are independent  of xl and z2. We search 
for a solution in the form w = --~kvr.kzd2 (~kt = const), i.e., according to (1.4), ekt = z~kt. It is clear from 
(3.4)-(3.6) tha t  the moments  Mkt and M~t are constant over the region S occupied by the plate and Eq. (3.7) 
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is identically satisfied. To satisfy the boundary  conditions (1.11c), it suffices to set Mkt = M~t. It follows from 
(3.4)-(3.6) that/~kt = O-kt (i.e., w = O~b, where O = const). Moreover, we have 

1 -- ~3 -- 811 : O _  1 _ h("121 -{- "22 + "11"22 n t- "122)1/2~ (3.8) 
3D - V~eT 

Let the function f (e{)  have the form (3.3). According to (3.1) and (3.8), r = 2eTz / (h~)  for 0 < z <. h/2.  

We then have the following equality for the integral I1 in (3.4) and (3.8): 

11--'-~ ( h ) 3 1 3 ( 1 - ~ 3 ) n ' - - ~ ( 1 - ~ 2 ) ] ,  

which is subst i tuted into (3.3) to give the equation for 

h(-121 n t- -22 -I- - i 1 - 2 2  -{- -122) 1/2 (3.9) 
~3 _ (2y + 3)( + 2 = 0, Y = v~r  - # / S )  

One can see that,  for any y > 0, Eq. (3.9) has a single root ~ in the interval (0, 1) and (y + 3/2) -~ < 
< (y + 1) -1. For known ~, one finds the quantity O from (3.8) and, consequently, the deflection w = 0"5. 

One should note that, for # = 0, the function (3.8) and the solution correspond to the plate from an 
ideal elastoplastic material. 

If the section of the elastoplastic diagram between the points (eT, aT) and (eB, C~B) is approximated 
by a power function, for f ( e i )  from (3.2), we have f ( e i )  = a T ( e i / e T )  m = CrT[2z/(h~)] 'n, where m = 
l n ( a B / ( r T ) / l n ( e B / C T )  < 1. Substituting this function into (3.8), we obtain 

~o(~) - (1 - rn)~ 3 - (rn + 2)y1~ - 3~ 1-m + (m + 2) -- 0, (3.10) 

where yl = (1 - # / E ) y  and the constant y is determined in (3.9). Since 0 < m < 1 and ~'(~) = 3(1 - m)(~ 2 - 
~-m) _ (m + 2)yl < 0 for 0 < ~ < 1, r > 0, and ~p(1) < 0, the single root ~ of Eq. (3.10) exists in the 
above-mentioned interval for any yl > 0. In view of the fact that ~3 < ~ < ~l-,n < m + (1 - m)~ for 0 < ~ < 1 
and 0 < m < 1 [5], with allowance for (3.10), one can revise the root bounds: 

2(1 - m) 1 
3(1 - m) + (m + 2)y, < < 1 + 

4. I t e r a t i v e  M e t h o d  of  S o l u t i o n .  Similarly to [2, 3], one can reduce the problem in question to the 
determination of the deflection w from the functional equation 

w = F ( w ) ,  F ( w )  = we(w) + "5. (4.1) 

To solve (4.1), we use an iterative method in which 

w "+1 = F ( w  n) = w e" + ,5 (4.2) 

where w en = w e ( w  n) (n = 0, 1, 2 , . . . ) ,  and we set, for example, w ~ = "5 as a zeroth approximation. 
Thus, in each iteration, we have a direct problem of determining the elastic "unbending" w e = 

we(x l , x2 )  for a known function w = w ( x l , x 2 )  and one of the boundary conditions (1.11). The solution 
of this problem is unique (in the meaning mentioned in Sec. 2), since, for the difference between the two 
possible solutions, with allowance for (1.3), (1.4), and (2.1), we obtain 

0 I 

v s 

[the quantity I is determined in (2.2)], which is valid only for Aw~k t ---- O. For example, for an isotropic plate 
of constant thickness, the problem of determining w e reduces to the biharmonic equation (3.7) with known 
right-hand side and one of conditions (1.11). 

S t a t e m e n t .  The sequence (4.2) converges to the desired deflection w. 
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We introduce a semi-norm 

3 (1) (2) ( w l , w 2 )  = j ( h  / 2 4 ) b k t m n w , k t w , m "  d S  

s 

generated by the scalar product I[wll = (w,  w )  ~/2. If w = 0 at three points of the plate which do not lie on 
the same straight line, Ilwll is a norm equivalent to IlwllH=(S) [2, 31. 

We denote the difference between the exact and approximate values (i.e., the values obtained in the 
nth iteration) of the corresponding function u by A u  n = u n - u. Then, from (4.1) and (4.2) we find 

m w n =  A W  e(n-1).  (4.3) 

We show the validity of the inequality 

Ila~o'"ll <~ II• 

Indeed, from (1.3), (1.4), and (2.1) we obtain 

= [A ' zar = 2ll/Xw'nl[ 2 + / " / >  j n  2[[Awenll2 , 

V 

f (  ,, n A p,, - n ,  I n -- a k l i j A p k l A p i j  + z.xckt z.xakt ) dV.  

V 

At the same time, we have 

f A n en j n  = ek tAak t  d V  

V 

since, in view of (4.3) and (2.1), we have 

= 2 ( a w l  Aw =") ~ 211aw"ll Ilaw~"ll, 

j = f = o, 

(4.4) 

(4.5) 

(4.6) 

V V 
A e ( n - - 1 )  A e ( n - - 1 )  A e ( n - - 1 )  

where ~ekt = - -z / ' .W,k  l = aklijl.MTij . 
The inequality (4.4) follows from (4.5) and (4.6); we note that the equality in (4.4) can occur only 

simultaneously with the equality in (4.5) and (4.6), i.e., for I n = 0 and ( A w  n, A w  en) = IIAwnllllAwe'~ll. The 
latter equality is valid in the case where the functions Aw,~ 1 and A w  e'~ differ only by the positive constant ,kl 
factor in the region S (see [5]), which is equal to unity according to (4.4), i.e., A w ~ t  = A w  e" ,kl" 

It follows from (4.3) and (4.4) that IIAwenll <~ IIAwe("-U]I ; therefore, the limit l i m  IIAw'nll = 

n-oo A w  en Following the reasoning in Sec. 2 and lim I[Awn[I exists and, consequently, I n ~ 0 and Aw~,kt ~ ,kZ. 

eliminating the rigid displacements, we have A p ~  t ~ 0 in V, ~n ~ Vp and Aa~l --* 0 in Vp, and A w "  ~ A w  en 

in S. Taking into account that w n = Wen+(V n, from (4.1) we find that ACv" = A w n - - ~ x w  en --.+ 0 in S. Thus, the 
sequence (4.2) converges to the deflection w which provides the specified residual deflection ~b, and the residual 
stresses P'~t, the plasticity zone Vp n, and the stresses a~t therein converge to the corresponding functions which 
satisfy the solution of the inverse elastoplastic problem. The statement is proved. 

5. Var ia t iona l  F o r m u l a t i o n  of t he  P r o b l e m .  The iterative process (4.2) can be used to determine 
approximate solutions of the inverse elastoplastic problem. To this end, we formulate the variational principle. 
We calculate the work of the residual stresses Pkl which is done in the strain variations 6~kl in the plate: 

- 6 1 2  =-- f pk,&ktdV = - f J~Ikl~We, k t d S .  

v s 

[The latter equality follows from the fact that 6ekt = &~t  = - z 6 w e M ,  since the function ~b = tb(Xl, z2) is 
specified and 6gkl = 0.] After simple manipulations similar to [1], we obtain 

- ~176 (5.1) - 6 1 2 : - f  M k t ' k t 6 w e d S +  f [ (  o +  O s ]  \ O n J l  " 
S 7 
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It follows from (5.1) that satisfaction of the equality 6Iz = 0 for an arbi t rary function 5w e is equivalent 
to satisfaction of the equation of equilibrium l~/lkt,kt = 0 and the boundary conditions (1.11c) after unloading. 
If w e = 0 and/or  Owe/On = 0 on 7, the varied function w e from (5.1) must satisfy these conditions. The 
deficit conditions from (1.11) follow from 512 = 0 as well. 

One can formulate the variational principle only if the expression --Pklhekl is the complete differential 
of a certain function (I) = (~(ekl), i.e., 

Or 
pkt = Oekt" (5.2) 

We inquire when the function (I) exists. From (1.2) and (1.4), we find 

Pkt = O'kl + bklmn(gm,~ -- emn). (5.3) 

It follows that (5.2) holds provided the stress potential Ua or the strain potential Ue exists (i.e., akz = OU, r/OEk! 
or ekt = OUJOakt) ,  since these potentials are related by the equality U~(ekl) -4- Ue(akl) = aktekl and the 
existence of one of them ensures the existence of the other. From (5.3), we obtain 

r = bklmnekl(emn/2 -- grnn) -- Uo.(ekl). (5.4) 

For example, (1.4) and (1.7) imply the existence of the function (b for a hardening elastoplastic medium, since 
in this case 

O'kl 
1 

0 

We now investigate in greater detail an isotropic plate of constant thickness h characterized by Eqs. 
(3.1) and (3.2), according to which 

e, { Ee  2/2, ei<~eT, "f 
f = I3 = f ( e i )  dei. Uo'(~kt) = o'i(~i)d~i E ~ 2 / 2  -q- I3,  ~i > CT, 
o eT 

From (5.4), we find 

v( kt) = 2 - - F ,  - 5 ,  > 
( 5 . 5 )  

F1 = (2/3)E(gktekt  + gkken). 

One can easily see that (I) -- O(ekl) is a continuously differentiable convex function that satisfies an 

of the form (1.8). It follows that the minimum of the functional I2(w e) = / O ( e k z )  dV  occurs for inequality 
d 

v 
the actual deflection w = w e + ~,  which is the solution of the inverse elastoplastic problem, since for any 
different field tO = tO e + zb that  satisfies the kinematic boundary conditions (1.11) (if they are included in the 
formulation of the problem), by virtue of (1.8), we have 

I2(tO e) I2(w e) ftq)(gk,) q)(ekl)]dV/> f 0O f - = - - Pkt( kt e~t) dV 0 ~ , , ( e k l  - -  e k t )  d V  = I ge  _ = 

V V V 

[the latter equality follows from (1.6) and (1.11)]. 
Thus, the inverse elastoplastic problem reduces to the determination of the minimum of the functional 

12 = I2(we), which enables one to construct approximate solutions. As an example, we consider a linearly 
hardening medium for which the function f (e i )  is determined in (3.3). From (5.5), we obtain 

{ - F 1 ,  ei ~< eT, (5.6) 
r = - F 1  + ( E -  #)(el - eT)2/2, ei > eT- 

We search for the first approximation of the deflection w in the form w = Oz~, where O is a constant. 
Denoting the dimensionless distance from the plane z = 0 to the plasticity zone by ~, from (5.6) and (3.5), 
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we find 

c ~ = 1 - - -  

h/2 h/2 

/ 2 ( o ) = S [ - 2 i F i d z + ( E - t t )  / (r  2dz] dS 
s o ~h/2 

Eh 3 
[(aO 2 - 20)/4 - 3oeaOIs - a~e30-1/6 + 3ee2aS1], 

24 

E' It -h'-' 2.T f f / h =   2dS, h =  S6 =  7-1dS, 
s s s 

3'i = [(2/3)(ff~,mm,kz + W,kk(V,ll)] 1/2. 
Here and below, we denote the area of the region S by S1. 

Setting the derivative I~(O) to zero, from (5.7), we obtain 

r/3 - p r / +  2 = O, r /=  ~ k ~ )  p = ~  

(5.7) 

3~e I5 )  (5.8) 
+-5- 

Since w = Ozb, in view of (3.5), we have ~i = ~e/(~O) and 0 < ~ < 1. It follows that /4 /> ~e20-2S1 
and I6 ~< O~e-ls1, i.e., 77 ~< 1. 

A simple analysis has shown that Eq. (5.8) has a single root in the interval (0, 1) for p > 3, i.e., 
(3ee/2)[Is/I4 - (I6/I4) 1/3] + 1/a > 0. The deflection corresponding to this solution can be taken as a zeroth 
approximation in the iterative process (4.2), i.e., one can set w ~ = Oz5. Apparently, for this choice of w ~ 
the sequence (4.2) converges to an exact solution of the inverse elastoplastic problem more rapidly than for 
w 0 --z3. 

We note that,  if 7i = const, we have 7/= ~, and Eq. (5.8) coincides with (3.9), i.e., in this case, the 
solution is exact and corresponds to that considered in Sec. 3. 
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